Using HVZKP in the wrong context #
Honest verifier zero-knowledge proofs (HVZKP) assume –yes, you guessed it– an honest verifier! This means that in the presence of malicious verifiers, non-interactive protocols should always be used. These also exchange fewer messages between prover and verifier.
A malicious verifier can employ different attacks depending on the proof system. Here, we will present attacks for the Short factoring proofs and the Two prime divisors proof.
The case of the Short-Factoring-Proofs #
Recall that in Short factoring proofs the prover shows that they know $\varphi(\varN)$ in the style of Girault’s scheme. $$ \begin{array}{c} \work{\varprover}{\varverifier} \alicework{\sampleRange{\varr}{A}} \alicework{\varx_i = \varz_i^\varr \mod \varN} \alicework{\forb} \alicebob{}{\bunch{\varx}}{} \bobwork{\sampleRange{\vare}{B}} \bobalice{}{\vare}{} \alicework{\vary = \varr + (\varN - \varphi(\varN))\cdot \vare \in \naturals} \alicebob{}{\vary}{} \bobwork{\vary \inQ \range{A}} \bobwork{\varx_i \equalQ \varz_i^{\vary- \vare\cdot\varN} \mod \varN \forb} \end{array} $$
After the initial commit, the verifier responds with a challenge $e$ supposedly sampled from $\range{B}$. However, being malicious, the verifier chooses $\vare=A$, the maximum value that $\varr$ can be. So, that after receiving $\vary = \varr + (\varN - \varphi(\varN))\cdot \vare$, they can compute $\varN - \vary//\vare$ which will reveal $\varphi(\varN)$.
The case of the Two-Prime-Divisor proof #
In the Two prime divisors proof, the prover has no way of checking if the verifier is trying to attack them. Recall the beginning of the protocol that the verifier chooses $\rhovar_i$ values: $$ \begin{array}{c} \work{\varprover}{\varverifier} \bobwork{\sampleSet{\rhovar_i}{J_\varN}, \text{ for }i=1,\ldots,m} \bobalice{}{\{\rhovar_i\}_{i=1}^m}{} \alicework{\sigmavar_i = \begin{cases} \sqrt{\rhovar_i} \mod \varN &\text{ if }\rhovar_i \in QR_\varN \\ 0 &\text{ otherwise} \end{cases} } \alicework{\text{ for }i=1,\ldots,m} \alicebob{}{\{\sigmavar_i\}_{i=1}^m}{} \end{array} $$
Then, the verifier computes the square-roots of these values! It is known that factoring and computing modular square-roots are equivalent [HOC - Fact 3.46].
An attacker can:
- select random numbers $r_i$
- send their square $r^2_i \mod \varN$ to the prover,
The prover will compute their square roots, $\sigma_i$ which can be different than $\pm \varr_i$ since there are four different square-roots modulo $\varN = p q$. When $\sigma_i\neq \pm \varr_i$, computing $\gcd (\varN, \sigma_i - r_i)$ will reveal one of the factors of $\varN$. This is because
$\begin{align*} \sigma_i^2 &\equiv r_i^2 \mod \varN \\ (\sigma_i^2 - r_i^2) &\equiv 0 \mod \varN \\ (\sigma_i - r_i)(\sigma_i + r_i) &\equiv 0 \mod \varN \end{align*}$
References #
- [HOC] Handbook of Applied Cryptography (2018).